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The propagation of acoustic waves of frequency o in a waveguide can be 
described by the equation 

~f&r+j (0.1) 

where q5 is the velocity potential (u = grad d), c = c(x, y, z) is the 
sound velocity which depends on the properties of the medium at the point 
(x, y, z). 'lhe normal derivative vanishes on the boundary of the wave- 
guide, namely 

% . -_=U 
an 

(0.3) 

In the present article periodic waveguides are considered. If 1 is the 
period of the waveguide, then a translation of the waveguide through a 
distance 1 along the x-axis will transform the waveguide into itself. 
'Ihis means that 

c(r + 4 Y, 4 = c(r, Y, z) 

Many problems involving electromagnetic waves in metallic guides can 
be reduced to an equation of the type (0.1). Diet us consider, for example, 
a waveguide filled with some homogeneous dielectric and bounded by two 
metallic surfaces y = y,(r) and y = y,(x) (-.m.< x < 4. Denoting by 4 
the z-component of the electric field, we obtain Equation (0.1) where c 
is the velocity of light in the dielectric in the waveguide. In this case 
the following condition is satisfied on the boundary surfaces of the 
waveguide: 

cp=O (0.3) 

'Ihe variable coefficient c can appear in Equation (0.1) also when one 
considers waveguide processes in a uniform medium. llet us consider a 
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two-dimensional waveguide of variable cross-section in which the velo- 
city of propagation is c = 1. 'Ihe ny-plane of the waveguide can be con- 
sidered as the plane of the complex variable z. ZLet us make a conformal 
representation tl) = f(z), which transforms the region bounded by the 
walls of the waveguide into the strip 0 < lm v < 1 in such a way that 
the point at infinity remains fixed. The function f(z) will be deter- 
mined up to within an additive constant. It will, therefore, have the 
property that fft + I) = f( ) z + const, and the function f'(z) will be a 
periodic function. In terms of the new variables u and v(w = u + iv) 

Equation (0.1) will have the form 

while the boundary condition (O.Z), because the transformation is con- 
formal, can be written in the form d$/Jv= 0 when v = 0, and v = 1. 
'Ihus we again obtain an equation of the type (0.1) with a variable 
coefficient before 4. 

The properties of waves in periodic waveguides are in mang respects 
analogous to the solutions of ordinary linear differential equations 
with periodic coefficients. It seems that many concepts and methods used 
for the investigation of solutions of such equations can be applied with 
success to the study of periodic wave guides. 

We note that for a two-dimensional waveguide bounded by two parallel 
lines y = 0 and y = 1 Equation (0.1) can be replaced by an approximating 
system of differential-difference equations with periodic coefficients: 

@TPn 
~-ZA,,cp,n+h~P,,(~)cp,=O (n=O, 1...., X) (0.4) 

111 m 

where 

cpn (4 = v (x9 +) I An, = - N2 (b+,, m - 2&m + LL m) 

P,, (2) = *nm 
c2(x, n/N)) 

h = co2 

Depending on the tw of the boundary conditions, we assume here that 
either #+, = (p,(x) - 0 or (P,(X) 3 #Jo, &Cx) z #N_ l(r). We call atten- 
tion to the fact that the matrices 11 Anl I{ and 11 Pn, 11 are positive- 
definite. 

A particular case of the system (0.4) with A,, s 0 is rather well in- 
vestigated 11,2,3 1. 

It is interesting to note that even though (0.4) is simpler in strut- 
ture than Equation (0.1) some results obtained for Equation (0.1) cannot 
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be carried over to the system (0.4). 

In the sequel we shall consider only those solutions # of Equation 
(0.1) which satisfy the boundary condition (0.2) or (0.3) and possess 
the following property: 

'l'he last property is equivalent to the requirement that the function 
be expressible as the product of some periodic function gS(x, y, z) by 
cikx 

rp(x, 9, 2) = eilrx$(~, 9, 21, stx+ 4 Y, 2) = -9(% YI 4 (0.5) 

Such solutions are natural generalizations of planar waves #(n,y,z) = 

eik”t,b(y, ) h' h z w ic exist in uniform cylindrical waveguides. On the other 
hand, waves of the form (0.5) are analogous to those solutions of ordi- 
nary linear differential equations which occur in Floquet’s theorem. ‘Ihe 
role of the multiplier is played by p = eikz. ‘Ihe number k is called the 
wave number. 

We call attention to the fact that just as in the theory of differ- 
ential equations so also in the theory of raveguides a special role is 
played by the multipliers which axe equal to unity. Indeed, the solution 
of Floquet is bounded if the modulus of its multiplfer is units and it 
is unbounded in the opposite case. On the other h8nd. for waveguides, a 
solution of the type (0.5) has a physical sense if the multiplier 
p = ,ikl is equal in modulus to unity, and it must be discarded (as not 
satisfying the boundary conditions with L = f .oo) if Ip 1 f 1. Together 
with this similarity there exists also a great contrast. In the theory 
of waveguides it is important to determine whether a field of a given 
frequency o can be propagated or, in other words, whether there exists 
at least one multiplier with modulus one for the given frequency w. In 
the theory of differential equations with periodic coefficients it is 
important to find out whether all solutions of a given equation are 
bounded, i.e. whether all multipliers are unity in absolute value (in 
modulus). 

!Lt us set ourselves the problem of finding those frequencies 

ol(k),<o,(k)f.. .<wi(k)\(. . . , Imk=O 

for which Equation (0.1) has a solution of the type (0.5) satisfying the 
boundary condition (0.2) (problem Al). The analogous problem with the 
boundary condition (0.3) we shall call problem %. 

l'he function 4(x, y, z) determines the wave number k with an accuracy 
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up to within the additive 
are periodic functions of 
o,(k) is an even function 
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constant 27r/E. Hence, the frequencies w,(k) 
k with period 2n/l. It is easy to see that 
of k. ‘Ihe interval of values through which 

a,(k) runs when k varies from 0 to R/Z is called the nth transmission 

band. 

In the sequel we shall establish some properties of these transmission 
bands, especially of the first transmission band. 

1. Maximal property of the frequencies o,(h). let us consider 
a single Ocell” Y of a waveguide bounded by an arbitrary smooth surface 
S which intersects the waveguide, and a surface S’ which is obtained from 
S by means of a parallel translation over a distance L along the x-axis. 
From the relation (0.5) it follows that at an arbitrary point (4, q, 5, ) 
lying on the surface S, and at the corresponding point (6 + 2, 7, 5) of 
the surface S’ the following relations hold: 

cp (6 + 4 rl, 5) = eiL$ (E, rl, 51, &qcPE+L q, 5)=e”“z&~(ET rl, 9 (1.1) 

Conversely, every function which satisfies the conditions (1.1) can 
be continuously extended over the entire waveguide so that the function 
will satisfy condition (0.5). 

Therefore, one can replace the problem AI by the problem AI(S) 
(A,(S)), which consists of finding the frequencies o,,(k) and the func- 
tions +,, satisfying Equation (0.1) inside the cell V, the boundary con- 
ditions (0.2) ((0.3)) on the lateral surfaces and the condition (1.1) on 
the surface S. 

We note that under the indicated boundary conditions the boundary- 
value problems A,(S) and $(S) are self-adjoint problems. If, addition- 
ally, we take into account the fact that 

c ~ ‘pA’pdu < 0, ‘p+- 

(the function 4 satisfiesVthe boundary conditions (0.2) or (0.3) and the 
condition (l.lj) we can conclude that all the numbers 
shall take them to be positive as is customary*. 

o,(k) are real. We 

For what follows it is convenient to introduce the notation 

J17{u} = \ llgrad 2.z I2 dv, J, {u> = \ I u I2 c2 (%;;, _) (1.2) 

9 V 

l When k = 0. the problem A2 has, obviously, the solution 4 = const, 
which corresponds to the frequency w1 which is equal to zero. 
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Since the numbers un2(k) are characteristic values of a self-adjoint 
boundary-value problem which by a known procedure can be reduced to a 
weighted integral equation, it follows that these numbers have the mini- 
maximal properties. Namely 

on2 (A-) = max inf JllUI 

(h . ..Y un-1 ) b_LUl,. . . 'Un-l) 
Jz {u) (1.3) 

where the maximum is taken over arbitrary sets of ul, . . . . un_ I square- 
integrable functions, and the infimum is taken over all differentiable 
functions u which are orthogonal to the functions of the selected set 

s UUJ + 0 (i=l,..., n-l) 

and satisfy on the surface S the first of the boundary conditions (1.1). 
On the lateral surface of the cell V the function u is arbitrary in the 
case of problem AI(S). In the case of the problem A,(S) the function u 
satisfies the condition (0.3). 

l’he maximum of the infimum is attained when uj = +j, j = 1, . . . , n - 1 
and u = q$,. 

Following Courant 14 I it is possible to establish a number of proper- 
ties of the spectrum by means of (1.3). 

1. The characteristic frequencies o,(k) are monotone and depend con- 
tinuously on the coefficient p(x, y, z) = cS2(x, y, z). Furthermore, the 
increment 8 0 n2(k) corresponding to the increment 6p satisfies the in- 
equality 

If the increment 6p is of the same sign at all points, then the in- 
crement 60 n2(k) has the opposite sign. 

2. Every deformation of the surface of a waveguide, which does 
change the length of the period and which decreases the region V, 

to an increase of all the characteristic frequencies o,,(k) of the 
lem A,(S) (and hence of the problem A,). 

not 
leads 
prob- 

3. The characteristic number ~~(0) is a simple one, and the correspond- 
ing characteristic function is positive within the region V under the 
appropriate normalization. 

The following asymptotic formula describes the gorwth of the numbers 
o,(k): 
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lim 
n-xx 

yL [& pq’ 

2. Boundary of the first transmission hand. let us pose the 
question on the change of the frequency when one replaces the boundary 
conditions (1.1) on S by the conditions 

cp (E, rl7 5) = 0, cp(E + 1, rl, 5)=0, (E, rl, 5) ES (2.1) 

or by the conditions 

acp (E;, rll 5) =; () acp(E+l* 113 I) 
an an 

_o 
, CL rl, 5)=S (2.2, 

ILet us denote the characteristic frequencies of the problems Ai’ 
and Ai” (S) (i = 1, 2) thus obtained by C! in (S) and oi,(S). These fre- 
quencies also have the mini-maximal properties 

s&f (8) = max inf JI {VI 
(Ul, . , u,_~) (vlul, . . , u,,__~) Jz (~1 

0in2 (As) = J, {WI 
max inf 

(Ul,. . . 9 Un_l) (W_L%P . . . * u,_J J2 1~1 

whereby on the surface S the function v satisfies the condition (2.1) 
while the function IO is arbitrary; the functions Jl(w) and Jg(w) are de- 
termined in accordance with (1.2). 

‘lhe class of functions v is smaller than the class of functions u, 
and this class in turn is smaller than the class of functions w. ‘Ihere- 
fore 

%I (3) < WI (k) < QtI (4 (2.3) 

i.e. the transmission band with the index n is contained among the 
characteristic numbers o,(S) and fin (S) of the problems A’(S) and A” (S) 
(the index i = 1, 2 has been omitted). 

Relation (2.3) was obtained by Vladimirskii [ 5 I in 1946* and somewhat 

* Vladimirski’s derivation is based on the assumption that the set of 
characteristic frequencies of a very long resonator obtained from a 
waveguide with two partitions coincides practically with the trans- 
mission bands of the waveguide. 
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later by Karaseva andaliubarskii [6 I*. 

Naturally, there arises the question for what values of k the fre- 
quency o,(k) will take on the minimum or maximum values. One can also 
ask for what choice of the surface S will the frequency o,,(S) attain its 
maximum value and for what choice of the surface S will the frequency 
Qn (S) take on its minimum value, 

ILet us consider these questions in relation to the first. transmission 

band. Suppose that &(x, y,. z, R/Z) is a wave which corresponds to the 
wavenumberk=n/l(,p= erkl = - 1) and to the frequency o = ol(n/Z). 
Ihe function &(x, y, z, n/Z) is skewperiodic, i.e. c&(x + 1, y, z, n/Z) 
= - #,(x, y, z, n/Z). Furthermore, since the boundary conditions are 
real one can assume without restricting the generality that. the function 
#Q is real. Therefore, there exists a surface u which intersects the 
waveguide and at all of whose points the function (pl(x, y, z, n/Z) 
vanishes. If one chooses for-S the surface u, then the function &(n, y, 
z, n/Z) will be a solution of the problem A'(S). Hence 

ia 
01 -f- ( ) = Ql(5) 

Making use of this equation and relation (2.3) we obtain 

mix 6% (k) = 01 (T), minQ,(S) - Q1 (0) (2.4) 

This establishes the first part of the following theorem. 

Theorem 2.1. 'Ihe first, transmission band is bounded from above by the 
frequency o~(~T/Z) which corresponds to the %-wave* (i.e. to the skew- 
periodic function (bl(x, y, z, n/Z) and is bounded from below by the fre- 
quency 0~(0) which corresponds to the function &(z, y, z, 0). 

* In the article of Karaseva and Liubarskii there is considered the 
propagation of electromagnetic waves of a general type (i.e. of waves 
which fail to have certain types of symmetry). The initial equation 
is rot rot E = (02 /c 2)E, which for all o f 0 guarantees the fulfil- 
ment of the fourth equation of Maxwell, div E = 0. If o = 0 the equa- 
tion rot rot E = 0 has infinitely many solutions, i.e. the frequency 
o = 0 is a degenerated value of infinite multiplicity, and relation 
(3.3) is not valid, which was pointed out by the authors of [6 1 after 
its publication. The difficulty that is connected with the indicated 
circumstance can be alleviated by narrowing the statement of the prob- 
lem: namely, by starting with the initial equation AE + (02/c2)E = 0 
and restricting the problems to those cases when this equation is re- 
duced to a scalar form. 



36 M.G. Krein and G.Ia. Liubarskii 

Let us prove the second part of the theorem. We consider the multiple 

period L = Nl, where N is an arbitrary integer. Lt us denote by w,*(k) 
those frequencies for which the differential equation (0.1) has a solu- 

tion of the form 

al (x, y, 2, k) = eiJfxYEm (IT:, y, 2, k) (2.5) 

Y,(z + L, y, 2, It) = Y, (x, y, 3, k) 

It is clear that all the functions 

qh(x, 21, =, G-2nmIL), O<k<2n/L, (nL=o,l,...( N-1) (2.6) 

are contained among the function an(x, y, z, k). On the other hand, the 

functions (2.6) exhaust all possible functions (2.5), for in accordance 

with a theorem of Gel'fand 18 1 one can express any function whose square 
is integrable within the waveguide as a Fourier integral in terms of 

either the functions (2.5) or (2.6). In particular, the periodic func- 

tion a.,(~, y, z, 0) which corresponds to the characteristic number al*(O) 

coincides with one of the functions 

(pl (x, Y, =, 2nmlL) (1~ = 1, , N -- 1) (2.7) 

Since one can assume without restricting the generality that the func- 

tion al(x, y, 2, 0) is positive, it is clear that it must coincide with 

the function +l(x, y, z, 0). All remaining functions (2.7) coincide with 

the functions Qn,(x, y, z, 0). The frequencies which correspond to them 

are greater than the frequency ol(0) 

ol(2nmlL) >QO) 

Since m/N is an arbitrary rational number smaller than unity, it 

follows from continuity that ~~(0) < o,(k), k > 0. This completes the 

proof of the theorem. 

We note that we have shown simultaneously how one should select the 

surface S in order that the problem A'(S) might have the smallest first 

characteristic number o,~(S): one should take for S the nodal surface of 

the a-wave r&(x, y, z, n/Z) = 0. 

let us apply this rule to a cylinder of arbitrary cross-section by 

assuming the propagation velocity c = c(y, z), namely, that c depends 

only on the coordinates y and z. In such a cylinder all waves of the 

type (0.5) are plane waves, i.e. they are of the following type: 

cp (x, y, z, k) = rihs$ (y, z) 
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Furthermore, in addition to the wave 4(x, y, z, k) there exists also 
the wave #J(- x, y, z, k). 

It is easy to see that the function 

+- [cp (G Y, 2. 4 + rp (- 5, y, 2, k)l = I$ (y, z) coskx 

is a w-wave when k = n/l. Ihe nodal surfaces of this wave are planes 
x = const, which are perpendicular to the generator of the cylinder. 
Hence, the following theorem is true. 

Theorem 2.2. Let C be a cylinder of volume V and having a cross-section 
x = const which is fixed in size and shape. The cylinder is bounded by 
two parallel surfaces S and S’. The first characteristic number c+(S) of 
the problem 

b-k O2 c’! (Y, 2) cp = 0, cp=o on S and S’ 

(on the lateral surface of the cylinder the function q5 is zero or it has 
a vanishing normal derivative) will take on the smallest value if the sur- 
face S is a normal section of the cylinder. 

If c = const this theorem follows directly from the principle of sym- 
metrization presented in 17 1 . b means of the proper generalization of 
the principle one can obtain the present result. 

3. Group velocity. An important physical characteristic of a wave- 
guide is the group velocity*, namely, the derivative &/dk. For the com- 
putation of the group velocity, when k = k,, it is sufficient to know 

the function w(k) in an arbitrarily small interval (k,, k, + K) and then 
only with a accuracy up to the first-order terms in K. Therefore, it is 
natural to use the methods of the theory of perturbation for the computa- 
tion of the group velocity. The application of the theory of perturbations 
is simplified because of the mini-maximal properties of the frequencies 
o,(k). 

We note, first of all, that the functions u, which may enter into re- 
lation (1.31, satisfy the first condition of (1.1). Therefore, the set 
M of admissible functions u is different for different k: M= M(k). If u 

* In the Appendix it will be shown that the functions o,(k), which are 
arranged in increasing order, are sectionally analytic functions; 
their analiticity is violated on the real k-axis only at those points 
where o,(k) = on+ ,(k) or o,(k) = on_ ,(k). 
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is an arbitrary function from the set M(k), then the function v = eZKXu 
obviously belongs to the set M(k + K). Conversely, every function v from 
M(k + K) can be represented in such a form. Hence, in view of (1.31, we 
have (in the notation of (1.2)) 

aIn2 (k, + x) = max inf J1 {ueixx} 
(4,. ..,Un_l)(U_LUIP.. . 9 U*-1) 

(J,(U) = 1) (3.1) 

or 

qL2(ko + x) = max inf {JI {u> + 
(%,.~~,~n_-l)(~lu19~~~ ? un-1) 

+ix\ (u$- -A$.) &+x2\ juj2dv) (J2{u}=l) 
V V 

It is easy to show that the function u = uK on which this maximum of 
the infimum is reached depends continuously on K and hence differs little 
from the function u = 4,(x, y, z, k,,). Therefore 

We note that under the integral sign in this equation there stands an 
expression which differs only by a normalization factor from the projec- 
tion of the Unov-Poynting vector on the z-axis. lbe flux St+,, k) of this . . 
vector is the same through every cross-section of the waveguide. Equation 
(3.2) can therefore be rewritten as 

do,= 
dk 

'lbe group velocity is thus seen to be proportional to the flux of the 
Uoov-Poynting vector, and hence to the energy flux. 

We note that this fact is well known for the particular case when the 
waveguide is homogeneous and cylindrical. 

We will call the multiplier p, = eik a multiplier of the first kind if 

SCqSa,, k) I> 0 and a multiplier of the second kind if SC+,, k) < 0. Rela- 
tion (3.3) shows that a multiplier of the first kind moves caunterclock- 
wise around the unit circle when the frequency on is increasing; a multi- 
plier of the second kind moves in the opposite direction under the same 
circumstances. 

From the physical point of view a multiplier of the first kind corre- 
sponds to a wave which carries energy in the positive direction, while a 
multiplier of the second kind carries energy into the opposite direction. 
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Relations (3.2) and (3.3) qu re ire refinements when the point k = k, 

corresponds to several equal frequencies*, 

@n (&) = 00 (n=m,m+1,...,m+p-l) 

in case of degeneration. Hereby there will correspond to the fre- 
~uZcy o,, and to the wave number k, a space Q, 

#s, y> z, k, ). When k = k, the frequencies on 
have no derivatives in general. Nevertheless, there exist left and right 
derivatives u’,(ko - 0) and u’“(kO + 0). They are given by 

(3.4) 

where the qj, f (n = m, . . ., m + p - 1) are some functions from aa,@( 

The function c$,,+ has the fol lowing extremal property: if the function u 
belongs to @, P(kO) and ..*, 

Y$: 1, 

is orthogonal to the functions q5,‘, q&,,+ 1, 
then the flux of the Unov-Poynting vector S(u) has a minimum when 

u = &+. Hence the problem of determining the function c&,+ in the space 
@I,P(kO) is an elementary algebraic problem. The function r#,,- can be 
found in an analogous way. We note that all functions d-and ++ are con- 
nected by the relation q5”-+ r_ 1 = +,,‘+ p_ r (F = 1, . ..) p). Because to 
this the curve on+ p_ r is, when k I> k,, a smooth continuation of the 
curve os+ r_ 1 when k < k,. 

Relation (3.2) makes it possible to estimate the absolute value of the 
group velocity. Indeed 

i.e. the group velocity does not exceed the greatest local velocity of 
propagation of small signals 

(3.5) 

From this follows the next estimate of the width of each transmission 
band: 

* In this connection see the work of Vishik and Liusternik [lo]. 
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Aw, < $ max c (2, y, z) 
x, 1/v L 

(3.6) 

4. &lki.sion of multipliers. Up to now the frequencies o,(k) 
(n = 1, 2, . ..) have been considered as functions of a real variable k. 
However, another viewpoint is possible. Indeed, just as for real so also 
for complex values of o one can define a set of multipliers pn = p,(o) 
as those values for which Equation (0.1) with the corresponding boundary 
condition (0.2) or (0.3) has a nontrivial solution satisfying the condi- 

tion Cp(x + 2, y, 2) =p#(x, y, 21. 

Such an approach connects the theory of periodic waveguides with the 
existing theory of systems of differential equations with periodic coeffi- 
cients, and thus facilitates the establishment of an analog between these 
theories. 

It appears that there exist theorems which are analogs of known results 
in the theory of PoincarC and Liapunov [ 1,3 ] . 

Theorem 4.1. lhe multipliers p,(o) are distributed synvnetrically re- 
lative to the unit circle if the quantity o is real. 

‘Ibis proposition can be proved rigorously for multipliers p,(o) which 
are obtained by an inversion followed by an analytic continuation of the 
function w,(k) (p = e ikr). For this it is sufficient to make use of the 
principle of symmetry in the theory of analytic continuation, on the 
basis of which there correspond to those values of w which are symmetric 
to each other with respect to the real axis values of p which are sym- 
metric relative to the unit circle. 

Theorem 4.2. The multipliers p,(o) are distributed symmetrically re- 
lative to the real axis. 

This follows from the fact that Equation (0.1) and also all boundary 
conditions are real. Hence, alongside the_solution #(x, y, z), there 
exists also a complex-conjugate solution 4(x, y, 2). These solutions cor- 
respond to complex-conjugate multipliers. 

It follows from these symmetry properties that a multiplier can lie on 
the unit circle or the real axis only under the condition that there is 
another oppositely moving multiplier on the unit circle or on the real 
axis. Therefore, we have the next theorem. 

Theorem 4.3. A multiplier cannot coincide with the unit circle or with 
the real axis unless it meets another multiplier. 

Let us consider the meeting on the unit circle of two multipliers when 
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cd= cl+)* As 0 increases these multipliers can either leave the circle or 
continue to move along the circle for some time, In the km-plane there 
are certain graphs which correspond to these possibilities (see Fig. 1). 

w 

00 ----_- 

~~ 

t( / K 

a c 

b 
Fig. 1. 

The cases (a) and (c) represent the meeting of two multipliers of 
different kinds, the cases (b) and (d) of two of the same kind. In cases 

(a) and (b) the multipliers leave the circle, while in cases (c) and (d) 
they remain on it. The case (b) can obviously not occur because the func- 
tion o,(k) is definite and continuous for all real values of k. Hence the 
multiplier can leave the circle only in consequence of a collision with a 
multiplier of a different type. 

In the cases of (cl and (d), with o = o,,~ two transmission bands touch 
each other. We shall show that these cases are unstable in the sense that 
the slightest disturbance of the conditions of the problem will result in 
the disappearance of the point of intersection of the curves w(k). Hereby 
one obtains in the plane (k, o) curves which are represented in Fig. 2. 
We see that if two multipliers of different kinds meet then the slightest 
disturbance can cause the multipliers to leave the circle, and the fre- 
quency o,, will not belong to any transmission band. Relative to multi- 
pliers of the same kind, it can be said that the very fact of meeting 
(collision) is “unstable’; the slightest disturbance will cause the meet- 
ing not to occur. 

An entirely analogous situation may also take place when several multi- 
pliers meet. 
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This situation does not differ in essence from the well-known quantum- 
mechanics effect of the non-intersection of two terms [ 9 1. 

Let us establish instability in the cases Cc) and (d), represented in 
Fig. 1, under a small change of the local velocity b(x, y, z) which does 
not destroy the periodicity of the waveguide. Denoting the disturbance 
of the velocity by c*(x, y, t) we obtain 

co f% ?A 4 = c Ii + es (% y, i)], e<f 

I A- cc y, 4 f < f I /grads/< 1 

Let us associate with each function a of M(k) the function 

Ug = $24 = El Ii + es (5, y, r)] 

It is clear that the function u also belongs to the set M(k) and that 
if u is normalized relative to the velocity c, then ue is normalized re- 
lative to the disturbed velocity co. If one substitutes u,, for u the ex- 
pression (3.1) takes on the following form: 

[&I (b + NIZ = (ul max inf J-1 {u} + 2% 
,...s~+_-l 1 (=iw...,un_-I) s 

s \ grad u \? dv + 

v (4.1) 
n 

+ 2~ 
I 

(ugrad u + u grad’;, grad s) dv + ix vz {a> = 1? 
\r V 

(here terms which are proportional to c2, CK and u2 have been dropped; 
J1 and Jz are given by (1.2)). We note that if ct = 0, K = 0, the maximum 
of the infimum is attained on an arbitrary function ue of @ a p(ko). One 
can prove that for small E and K the function a on which the’maximum of 
the infimum (4.1) is attained differs but little from some function # of 
@a ,(k,). Setting a = 4 in (4.1) one can see that the integral J,(u) be- 
cokes equal to mm2(ko) and will not depend on the choice of #e (oe,p(k,); 

Fig. 2a. Fig. 2b. 

the sum of the remaining three terms reduces to the sum of two Sermitian 
forms in the p-dimensional space 
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If the corresponding Hermitian matrix Cik = “Aik = KBib. has multiple 
roots then the degeneration is preserved; in the opposite case we obtain 
the picture shown in Fig. 2. 

bet us next make use of the following proposition of linear algebra. 

There exist n(r + 1)/2 - 1 linear relations which are satisfied by 
the matrix elements of an arbitrary Hermitian matrix of the nth order 
that possesses at least one a-multiple characteristic number. 

For the simplest (double) degeneration the number of these relations 
is two. Therefore, by changing only one parameter K one cannot achieve 
these conditions for the matrix elements Cik if the matrix Bik is not of 
a special form. 

5. Estimate of the boundary of the first transmission hand. 
'Ihe minimal property of the frequencies w,(k) permits one to obtain the 
following lower estimate of the upper boundary o,(s/l) of the first trans- 
mission band under the assumption that the waveguide has the form of a 
cylinder of arbitrary cross section S. Namely 

where /.~(y, z) is the first characteristic number of the one-dimensional 
problem 

CPU 
- - h,u + flP (z, y, 2) fJ = 0, e= 

u (I) = - a (0) 

d (l) = - a’ 6% p = c-2 (5.2) 

while A, is the first characteristic number of the problem 

PV g+$+“v=O (5.3) 

(v = 0 on the boundary S in the case of problem A,; in the case of prob- 

lem A,, the number X, is zero). 

For the proof of the inequality 
tity 

(5.1) we start from the obvious iden- 
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where & is a characteristic function which corresponds to the frequency 

q(n/Z) and 

From (5.4) it follows that 

where 

Al= ipf(S{j~ja+I~j,}dl,dz/s1v12dydz) 
S S 

(5.6) 

The infimum of the right-hand side of Expression (5.5) is taken over 

all skewperiodic functions, and is nothing more than the first character- 

istic number p1 of the problem (5.2). The infimum (5.6) is taken over all 

functions v which satisfy on the boundary of the region S the condition 

&/&a = 0 in the case of problem A,, and the condition v = 0 in the case 

of problem A,. In the first case X, = 0, while in the second case X, is 

the first characteristic number of the problem (5.3). The inequality 

(5.1) has thus been established. 

'Iet us now consider the fact that the first characteristic number /.L~ 

of problem (5.2) coincides with the upper boundary of the central zone 

of stability. In the case of problem A,, when h, = 0, it follows from 

the classical criterion of ~Liapunov's itabilityAthat 

Pl> rr\ c2(x;y,z) ] 

-1 

0 

From this inequality follows the next lower estimate 

qWI1: 
1 -1 

dx 

c2(r, 1 

for the frequency 

(5.7) 

which holds for the problem A,. 

Making use of other estimates of the upper 

of stability one can obtain a large number of 

o,(nlZL 

bound of the central zone 

estimates for the frequency 

An estimate of the first transmission band in the case of problem A, 
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(A,) is given by the inequality 

01 (k) =G V h (P”, 4 (5.8) 

where X (p” , k) is the first characteristic 

82U 
ay” + a:2 + k*u + h.p”u = 0; u = 0, 

2 

au -= 
at1 0 on the boundary S 

dx 
P"(YY 4 = +\ C2(X,y,n) 

0 

number of the problem 

‘Ihe inequality (5.8) follows from the obvious relation 

J1 (U (y, I) eikx3c).= inf 
s {I grad u (Y, 2) p + k2 1 u I21 dy dz 

oIa (k) < inf ~ 
S 

J2iu (Y, 2)) 
. (5.9) 

v 

By the same procedure one can obtain any convenient estimate o,(k) in 
the case of a circular cylinder of radius R. Choosing for the test func- 
tions u in (5.9) functions which depend only on the radius r of the 
cylinder, we obtain 

R 

aI2 (k) < inf \ {I$ /’ + k2 ) u I”} rdr / [ 1 u 1” p (I-) r dr (5.10) 
u 0 0 

where 

(5.11) 

Finally, replacing p(r) by its smallest value pm, we find that 

R 

q*(k) < $ i nf 1 ([$f~‘+k2/uj2}rdr / f~u12rdr 
0 0 

1 =- Pm 
where 2.405... is the first root of the Bessel function Jo(r). ‘&us, in 
the case of a circular cylinder, the lower boundary of the first trans- 
mission band o,(O) is bounded from above by the inequality 

2 an --‘I2 
dq dx 

c2 Ix, r, 01 I 
00 

(5.12) 
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6. Appendix. Analiticitg of the function o,,(k). The analiticity of 
the function o,,(k) can be established with the aid of general theorems 
of the theory of perturbations [ 10.11 1 if the function 4 vanishes on 
the surface of the waveguide, i.e. in the case of problem AZ. In the case 
of problem Al one can use the theory of perturbations only then when the 
surface of the waveguide is cylindrical. In this connection we shall 
first treat these two simple cases, and then later we shall indicate the 
proof of the analiticity of the functions o,(k) for all cases. 

In the nature of the first step we make the substitution 

cp (2, y, z, k, + x) = eeixrll, (2, Y, 2) (6.1) 

It is easy to see that I&Z + I, y, Z) = e iko I$ (r, y, z). Hence the 
function $(x, y, Z) satisfies the boundary conditions (0.5) when k = kg. 

It is also clear that the function $ also satisfies the boundary condi- 
tion (0.3) in the case of problem A2. In the case of problem Al the func- 
tion 4, generally speaking, does not satisfy the boundary condition (0.2). 
An exception is the case of a cylindrical waveguide in which the normal 
to the surface lies in the (y, z)-plane. Thus, 
cases when k = k, + K, the function $(x, y, zl 
ary conditions as the function 4(x, y, z, k,). 

ing differential equation is satisfied: 

in the two considered 
satisfies the same bound- 
Furthermore, the follow- 

which is obtained through the substitution of (6.1) into (0.1). 

Making one more substitution, $/c = x, we can rewrite the last equa- 
tion in the form 

AX+BX+dX=O AX = cAcx, acx 
BX = 2ixc,1: - CVx 

It is easily seen that 

where K is some constant. Therefore, by a theorem of Riesz-Nage [ll, 
(Chapt. 9, Sect. 136)] the characteristic number on2 is an analytic func- 
tion of K and hence of k. 

Let us consider next the case of a periodic waveguide. Iet us indicate 
by L, the set of square-integrable functions inside the waveguide. The 
Laplace operator is defined on the dense, in L2, set of differentiable 
functions which satisfy the boundary condition (0.2) (condition (0.3)); 
furthermore, the form (A$. 4) is not positive (4 6 L2). Therefore, the 
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operator - d + a(a3 0) has an inverse operator Ra. Applying the operator 
Ra to the &function 8(r - p), we obtain Green’s function 

G, (r, P) = R, 8 (r - P) 

The Green’s function ‘Ca(r, p) decreases exponentially as ( r - p 1 in- 
creases. Hence, the series 

G (r, p, k) = i G, (r, p + ~1) eirrk (r, PEP) 
k-m 

converges absolutely and uniformly in t and ‘p and is analytic in R in 
some neighborhood of the real axis (I is here a vector of length t 
directed along the x-axis). 

It is easily seen that ‘C(r, ‘p, k) is the Green’s function of the 
operator - b + a operating on functions u(x, y, z) defined within the 
cell Y and satisfying the boundary conditions (0.2), (0.3) and (1.1). 

The problem A, (Ax) is therefore equivalent to the integral equation 

The analiticits of w(k) now follows from the analiticity of the kernel 

‘G(r, p, k). 
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